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Approximate Bayesian computation (ABC) is rapidly gaining popularity in population genetics. One example, msBayes, infers the

distribution of divergence times among pairs of taxa, allowing phylogeographers to test hypotheses about historical causes of

diversification in co-distributed groups of organisms. Using msBayes, we infer the distribution of divergence times among 22

pairs of populations of vertebrates distributed across the Philippine Archipelago. Our objective was to test whether sea-level

oscillations during the Pleistocene caused diversification across the islands. To guide interpretation of our results, we perform a

suite of simulation-based power analyses. Our empirical results strongly support a recent simultaneous divergence event for all 22

taxon pairs, consistent with the prediction of the Pleistocene-driven diversification hypothesis. However, our empirical estimates

are sensitive to changes in prior distributions, and our simulations reveal low power of the method to detect random variation

in divergence times and bias toward supporting clustered divergences. Our results demonstrate that analyses exploring power

and prior sensitivity should accompany ABC model selection inferences. The problems we identify are potentially mitigable with

uniform priors over divergence models (rather than classes of models) and more flexible prior distributions on demographic and

divergence-time parameters.

KEY WORDS: Approximate Bayesian computation, biogeography, diversification, model choice, msBayes, Philippines, Pleistocene,

simultaneous divergence.

Approximate Bayesian computation (ABC) is a statistical tech-

nique burgeoning in many subfields of biology due to its flexibil-

ity and ease of accommodating complex, parameter-rich models

without the need of calculating a likelihood (see Beaumont 2010;

Bertorelle et al. 2010; Csilléry et al. 2010, for reviews). The

technique approximates the posterior of a model by accumulating

samples of parameters from the prior that yield summary statistics

similar to the values taken by these statistics on the observed data.

The parameter estimates are often regression adjusted to improve

the approximation by accounting for variation in the probability

of the data across the parameter space of the retained sample

(Beaumont et al. 2002; Blum and François 2009; Leuenberger

and Wegmann 2010).

One popular implementation of the ABC algorithm, msBayes

(Huang et al. 2011), provides a statistical method for test-

ing biogeographic hypotheses that predict temporally clustered
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divergences among co-distributed groups of organisms. Specif-

ically, the msBayes model infers the distribution of divergence

times among pairs of populations. Throughout this article, we use

“clustered,” “simultaneous,” and “co-divergence” interchange-

ably to describe the situation where msBayes infers the same time

of divergence for any subset of population pairs.

In applications of msBayes, researchers have often found sup-

port for temporally clustered divergences among co-distributed

pairs of taxa (Hickerson et al. 2006; Leaché et al. 2007; Carnaval

et al. 2009; Plouviez et al. 2009; Voje et al. 2009; Barber and

Klicka 2010; Daza et al. 2010; Lawson 2010; Chan et al. 2011;

Huang et al. 2011; Bell et al. 2012; Stone et al. 2012). How-

ever, previous investigators have not performed power analyses

to inform their interpretation of shared divergence times. Rather,

support for co-divergence has been taken as support for a shared

event, without determining how much variation in divergence

times is permissible while still leading to an inference of “simul-

taneous” divergence. In this study, we use simulations based on an

empirical dataset from the Philippines to determine the power of

the ABC method implemented in msBayes for detecting temporal

variation among divergences.

PLEISTOCENE MODEL OF DIVERSIFICATION IN AN

ISLAND ARCHIPELAGO

The 7100+ islands of the Philippines may harbor the highest con-

centration of biodiversity on Earth (Heaney and Regalado 1998;

Brown and Diesmos 2009), and have a relatively well-understood

geologic history (Dickerson 1928; Inger 1954; Heaney 1985; Hall

1998; Voris 2000; Yumul et al. 2008). During Pleistocene glacial

cycles, sea-level fluctuations caused groups of previously isolated

islands in the Philippines to undergo repeated cycles of connec-

tivity and isolation (Voris 2000). During glacial periods, when sea

levels dropped to 120 m below current levels, neighboring islands

coalesced into seven main landmasses known as Pleistocene Ag-

gregate Island Complexes (PAICs; Brown and Diesmos 2002). In

interglacial periods, rising sea levels split the PAICs into the set of

islands we see today. There have been at least six of these climate-

driven cycles during the last 500,000 years (Rohling et al. 1998;

Siddall et al. 2003), with additional cycles occurring in the late

Pliocene and early Pleistocene (Haq et al. 1987; Miller et al. 2005).

The repeated formation and fragmentation of PAICs has been

proposed as a mechanism of diversification across the Philippine

islands (Heaney 1986; Brown and Diesmos 2002, 2009). The

PAIC model makes a specific prediction: if repeated bouts of

connectivity and isolation promoted diversification, divergence

times between populations on islands connected during glacial

lowstands should be clustered and correspond to when sea levels

rose. If the PAIC cycles did not cause diversification, then di-

vergences among island populations must be dispersal-mediated,

and would not be temporally clustered across different groups.

We test this prediction by inferring the temporal distribution of

divergences among 22 population pairs from a diverse set of ver-

tebrate taxa using mitochondrial sequence data from nearly one

thousand individuals from across the Philippines.

Methods
OVERVIEW OF THE DATA

We gathered datasets for which there were mitochondrial se-

quence data for multiple individuals from populations of a species

(or two closely related species) from two different islands within

a PAIC. By maximizing population sample sizes and avoiding

multiple use of data, we ended up with 470 individuals from 22

population pairs spanning five orders of terrestrial vertebrates.

Thirteen pairs are from the Greater Mindanao PAIC and nine

are from the Greater Negros–Panay PAIC (Table S1). We used

these samples to infer the pattern of divergence times for the 22

population pairs with msBayes. We used 499 additional samples

to estimate appropriate models of nucleotide substitution, gene

trees, and the population mutation rate (θ). These samples are

from other island populations of the same species and closely

related species (Table S6).

All megachiropteran sequences are from Roberts (2006 a, b).

All Crocidura shrew sequences are from Esselstyn et al. (2009).

We included sequence data from geckos of the genera Cyrto-

dactylus and Gekko (Siler et al. 2010, 2012), frogs of the genus

Limnonectes (Evans et al. 2003), bats of the genus Hipposideros

(Esselstyn et al. 2012), and Sphenomorphus-group scincid lizards

(currently assigned to the genera Pinoyscincus and Insulasaurus;

Linkem et al. 2010, 2011), and augmented these datasets using the

protocols in these papers to collect additional sequences. We col-

lected sequences from snakes of the genus Dendrelaphis based on

the protocols in Linkem et al. (2010) using the primers from Bur-

brink et al. (2000). All samples and their corresponding Genbank

accession numbers are in Table S6.

PHYLOGENETIC ANALYSES

For phylogenetic analyses, we grouped closely related taxa, re-

sulting in a total of 11 datasets that were easily aligned us-

ing MUSCLE (v3.7; Edgar 2004) with no or few gaps (Dryad

doi:10.5061/dryad.5s07m). We used RAxML (v7.0.4; Stamatakis

2006) to estimate maximum likelihood (ML) trees for each of the

11 alignments, using the rapid hill-climbing heuristic algorithm

(Stamatakis et al. 2007). For each RAxML analysis, we ran 100

search replicates, applied the “GTRMIX” model of nucleotide

substitution, and used random starting trees. On each of the 11

ML trees inferred by RAxML, we estimated parameters of the

HKY85 model (Hasegawa et al. 1985) using PAUP* (v4.0b10;

Swofford 2003). We used these HKY85 parameter estimates in

subsequent msBayes analyses.
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We used the Bayesian information criterion (BIC; Schwarz

1978) to select the best-fit model of nucleotide substitution for

each alignment using PAUP* and ModelTest (v3.7; Posada and

Crandall 1998). We inferred an ultrametric tree for each alignment

in BEAST (v1.5.4; Drummond and Rambaut 2007) using the BIC-

selected model and a constant substitution rate of 2 × 10−8 per

site per year. For each dataset, we ran two independent BEAST

analyses for 20 million generations and, after a conservative burn-

in period of five million generations, sampled parameter values

from the chain every 5000 generations. We assessed stationarity

by plotting the sampled parameter values and likelihood scores of

both independent chains over generations, and confirming con-

gruence between consensus trees from both posterior samples.

ESTIMATES OF θ TO GUIDE PRIOR SPECIFICATION

Broad uniform priors may cause low marginal likelihoods for

complex models, leading Bayesian model selection procedures to

prefer overly simplistic models (Lindley 1957; Jeffreys 1961). We

therefore estimated the population mutation rate (θ = Neμ) using

499 samples from 30 populations (Table S6), and subsequently

used these estimates to guide our choice of prior distributions of θ

in the msBayes analyses. None of these 30 populations were used

in the msBayes analyses, thus we avoided statistical problems

associated with multiple use of data. All θ estimates were derived

from the same gene fragment that was used for the corresponding

taxon pair in the msBayes analyses. We used Dendropy (v3.2.1;

Sukumaran and Holder 2010) to calculate Watterson’s θ (θW ;

Watterson 1975) and the average per site nucleotide differences

(π; Nei and Li 1979).

THE msBayes MODEL

Let Y be the number of population pairs, ki be the number of loci

sampled for the i th population pair, and K be the total number

of unique sampled loci. Let X = {X1,1, . . . , XY,kY } represent the

data, which is a vector of multiple sequence alignments, where

Xi, j is the alignment of the j th locus sampled for the i th population

pair. The joint posterior distribution of the model implemented in

msBayes is given by

f (G, �, τ, θA, θD1, θD2, α,υ, τB, ζD1, ζD2, m | X,φ,ρ, ν)

= 1

f (X)
f (�) f (τ | �) f (α)

[
Y∏

i=1

f (θA,i ) f (θD1,i , θD2,i )

× f (τB,i ) f (ζD1,i ) f (ζD2,i ) f (mi )
ki∏

j=1

f (Xi, j | Gi, j ,φi, j )

× f (Gi, j | τi , θA,i , θD1,i , θD2,i , ρi, j , νi, j ,υ j ,

τB,i , ζD1,i , ζD2,i , mi )

][
K∏

j=1

f (υ j | α)

]
, (1)

where G = {G1,1, . . . , GY,kY } are the gene trees upon which each

Xi, j evolved according to the HKY85 substitution model pa-

rameters φi, j . The HKY85 model parameters for each alignment

reside in vector φ = {φ1,1, . . . ,φY,kY }, and are fixed constants

provided by the user. τ is the vector of times, in coalescent units,

when the populations of each pair diverged, {τ1, . . . , τY}. � is

the hyperparameter controlling the number of unique τ within τ.

θA = {θA,1, . . . , θA,Y} is the vector of θ parameters for the ances-

tral population of each population pair. θD1 = {θD1,1, . . . , θD1,Y}
is the vector of θ parameters for the first descendant popula-

tion of each pair; θD2 = {θD2,1, . . . , θD2,Y} is the same for the

second descendant population of each pair. ρ = {ρ1,1, . . . , ρY,kY }
and ν = {ν1,1, . . . , νY,kY } are vectors of θ-scaling constants pro-

vided by the user (Table 1). Furthermore, there are locus-

specific θ-scaling parameters in the vector υ = {υ1, . . . ,υK }.
α is the shape parameter of the gamma prior distribution on

each υ. ζD1 = {ζD1,1, . . . , ζD1,Y} is the vector of θ-scaling pa-

rameters that determine the magnitude of the bottleneck in the

first descendant population of each population pair, whereas

ζD2 = {ζD2,1, . . . , ζD2,Y} is the same for the second descendant

population of each pair; for both descendants of each popula-

tion pair, the bottleneck begins immediately after divergence in

forward-time. τB = {τB,1, . . . , τB,Y} is the vector of the propor-

tions of time between present and τ when the bottleneck ends

for both populations in each pair; after which the populations

grow exponentially to present. m = {m1, . . . , mY} is the vector

of symmetric migration rates between the descendant populations

of each pair.

Prior terms of Equation (1)
The prior terms of Equation (1) within the product over population

pairs include f (θA,i ), f (τB,i ), f (ζD1,i ), f (ζD2,i ), and f (mi ). For

each pair, these are independently and identically distributed (iid)

as θA ∼ U (aθ , bθA ); τB ∼ U (0, 0.95); ζD1 ∼ U (0.01, 1); ζD2 ∼
U (0.01, 1); and m ∼ U (0, bm ). Let us further denote the mean of

the two descendant populations of the i th pair as θD,i , which, for

each pair, is iid as θD ∼ U (aθ , bθD ). The prior on θ of the first

and second descendant population of the i th pair ( f (θD1,i , θD2,i ))

is then θD1,i , θD2,i ∼ Dirichlet(1, 1) × 2θD,i .

The terms in Equation (1) outside of the product over popu-

lation pairs include the hyperprior probability distributions f (�),

f (α), and f (τ | �). The prior on � is uniformly distributed on

the integers 1 to Y . The prior on α is α ∼ U (1, 20). If we

let T = {T1, . . . , T�} be the vector of the � unique divergence

times, then f (τ | �) = f (T | �) f (τ | T). Each T within T is iid

as T ∼ U (0, bτ ). Each T is placed in τ once, and the remaining

Y − � slots within τ are populated by randomly drawing from

T with replacement. If we let x1, . . . , x� denote the number of

times each T1, . . . , T� is selected for the Y − � slots, then the
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Table 1. Summary of the notation used throughout this work.

Symbol Description

Y Number of population pairs.
ki Number of loci sampled from population pair i .
K Total number of unique loci sampled.
Xi, j Sequence alignment of locus j sampled from population pair i .
S∗

i, j Population genetic summary statistics calculated from Xi, j .
X Vector containing the sequence alignments of each locus from each population pair: {X1,1, . . . , XY,kY }.
S∗ Vector containing the summary statistics of each locus from each population pair: {S∗

1,1, . . . , S∗
Y,kY

}.
Bε(S∗) Multidimensional Euclidean space around the observed summary statistics, S∗.
ε Radius of Bε(S∗), i.e., the tolerance of the ABC estimation.
Gi, j Gene tree of the sequences in Xi, j .
G Vector containing the gene trees of each locus from each population pair: {G1,1, . . . , GY,kY }.
� Number of unique population divergence times among the Y population pairs.
T One of the � unique divergence times in 4NC generations.
T Vector of � unique divergence times: {T1, . . . , T�}.
τi Time of divergence in 4NC generations between the populations of pair i .
ti, j Scaled time of divergence between the populations of pair i for locus j .
τ Vector containing the divergence times for each population pair: {τ1, . . . , τY}.
t Vector containing the scaled divergence times of each locus from each population pair: {t1,1, . . . , tY,kY }.
θD1,i , θD2,i θ of the 1st and 2nd descendent population, respectively, of pair i .
θA,i θ of the population ancestral to pair i .
θD1, θD2 Vectors {θD1,1, . . . , θD1,Y} and {θD2,1, . . . , θD2,Y}, respectively.
θA Vector containing the θA parameters for each population pair: {θA,1, . . . , θA,Y}.
υ j θ-scaling parameter for locus j .
υ Vector containing the θ-scaling parameters for each locus: {υ1, . . . ,υK }.
α Hyperparameter for the shape of the gamma prior distribution on each υ.
ζD1,i , ζD2,i θ-scaling parameters that determine the magnitude of the population bottleneck in the first and second descendant

population of pair i , respectively. The bottleneck in each descendant population begins immediately after
divergence.

ζD1, ζD2 Vectors {ζD1,1, . . . , ζD1,Y} and {ζD2,1, . . . , ζD2,Y}, respectively.
τB,i Proportion of time between present and τi when the bottleneck ends for the descendant populations of pair i .
τB Vector containing the τB parameters for each population pair: {τB,1, . . . , τB,Y}.
mi Symmetric migration rate between the descendant populations of pair i .
m Vector containing the migration rates for each population pair: {m1, . . . , mY}.
ρi, j θ-scaling constant provided by the user for locus j of pair i . This constant is intended to allow the user to scale θ

for differences in ploidy among loci or differences in generation times among taxa.
νi, j θ-scaling constant provided by the user for locus j of pair i . This constant is intended to allow the user to scale θ

for differences in mutation rates among loci or among taxa.
ρ Vector of ploidy and/or generation time scaling constants: {ρ1,1, . . . , ρY,kY }.
ν Vector of mutation-rate scaling constants: {ν1,1, . . . , νY,kY }.
E(τ) Mean of τ.
V ar (τ) Variance of τ.
� Dispersion index of τ (V ar (τ)/E(τ)).
� Vector containing all the parameters of the model implemented in msBayes.
f (�) Joint prior probability distribution of the msBayes model.
n Number of samples from the joint prior, f (�).
� Vector containing the following summary of �: {�, E(τ), V ar (τ),�}.
S Vector containing the summary statistics calculated from data simulated under �.
P f (�) Random sample of �1, . . . , �n from f (�).
S Summary statistic vectors S1, . . . , Sn for each �1, . . . , �n within P f (�).
Pε Samples retained from P f (�) after rejection sampling. I.e., the �’s from P f (�) with S’s that fall within Bε(S∗).
P f (�|Bε(S∗)) The estimate of the approximate posterior, f (�|Bε(S∗)). I.e., the regression-adjusted Pε.
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probability mass function is

f (τ | T) = f (x1, . . . , x� ; Y − �, p1, . . . , p� )

= Y − �!

x1! · · · x� !
px1

1 · · · px�

� ,
(2)

where p1 = p2 = · · · = p� = 1/� and
∑�

i=1 xi = Y−�.

The τ parameters are in coalescent units relative to a constant

reference population size, θC /μ, where θC = bθD /2. We denote

these coalescent units as 4NC generations. Thus, the τ within τ

are proportional to real time, and can be converted to the number

of generations of the reference population, τG , by assuming a

mutation rate, μ, and using

τG = τ ×
bθD

2

μ
. (3)

Note, for each τ within τ to be on the same scale of 4NC gener-

ations, and thus comparable, msBayes assumes the relative mu-

tation rates among the populations are fixed and known. The

relative rates are fixed according to the values in ν provided by

the user. To get the divergence times into units proportional to

the realized population size, and thus the expected number of

mutations, msBayes scales the divergence times for each locus of

each population pair before simulating data, creating the vector

t = {t1,1, . . . , tY,kY }. For the j th locus of the i th pair, τi is scaled

by

ti, j = τi × θC

θD,iρi, j
. (4)

The user-defined θ-scaling constants in ρ can thus be used to

account for known differences in ploidy among the loci and/or

differences in generation times among the taxa.

msBayes allows for intralocus recombination, which, for sim-

plicity, is not included in Equation (1). If the intralocus recombi-

nation rate, r , is allowed to be nonzero, another prior f (r ) would

be outside the product over population pairs in Equation (1), and

it would be distributed as r ∼ U (0, br ).

The term within the product over the K unique loci is the

prior probability density of the θ-scaling parameter of the j th

locus, f (υ j | α). Each of these parameters is iid as υ ∼ �(α, 1/α).

We use � to denote all of the parameters of the msBayes

model, and f (�) to represent the joint prior probability distribu-

tion of the model (Table 1).

Likelihood terms of Equation (1)
For the j th locus of the i th population pair, the term

f (Xi, j | Gi, j ,φi, j ) is the probability of the sequence alignment

given a gene tree and HKY85 parameters, or the Felsenstein like-

lihood (Felsenstein 1981). If the intralocus recombination rate is

allowed to be nonzero, Equation (1) would require another prod-

uct over the columns of each sequence alignment to allow sites

to have different genealogies. The term f (Gi, j | . . .) is the prob-

ability of the gene tree under a multipopulation coalescent model

where the ancestral population of constant size θA,iρi, jνi, jυ j di-

verges at time τi into two descendant populations of constant

size θD1,iρi, jνi, jυ j ζD1,i and θD2,iρi, jνi, jυ j ζD2,i that exchange mi-

grants at symmetric rate mi . After time τB,i × τi they grow ex-

ponentially to present size θD1,iρi, jνi, jυ j and θD2,iρi, jνi, jυ j , re-

spectively. Lastly, f (X) is the marginal likelihood of the model,

or the probability of the data.

THE ABC IMPLEMENTATION OF THE msBayes MODEL

msBayes does not estimate the posterior in Equation (1). Rather,

it distills the alignments X = {X1,1, . . . , XY,kY } into vectors of

summary statistics S∗ = {S∗
1,1, . . . , S∗

Y,kY
} and estimates the ap-

proximate joint posterior distribution

f (G, �, τ, θA, θD1, θD2, α,υ, τB, ζD1, ζD2, m | Bε(S∗),φ,ρ, ν)

= 1

f (Bε(S∗))
f (�) f (τ | �) f (α)

[
Y∏

i=1

f (θA,i ) f (θD1,i , θD2,i )

× f (τB,i ) f (ζD1,i ) f (ζD2,i ) f (mi )
ki∏

j=1

f (Bε(S∗
i, j ) | Gi, j ,φi, j )

× f (Gi, j | τi , θA,i , θD1,i , θD2,i , ρi, j , νi, j ,

υ j , τB,i , ζD1,i , ζD2,i , mi )

][
K∏

j=1

f (υ j | α)

]
, (5)

where Bε(S∗) is the multidimensional Euclidean space around the

vector of observed summary statistics, the radius of which is the

tolerance ε.

To estimate this approximate posterior, msBayes uses an ABC

rejection algorithm followed by regression adjustment. The first

step of the algorithm is to draw n samples from the joint prior,

f (�). In the case of one locus per population pair, msBayes

draws a sample from f (�) by (1) drawing � from the inte-

gers 1 to Y ; (2) drawing � divergence times from U (0, bτ ) in

units of 4NC generations, to get T = {T1, . . . , T�}; (3) randomly

assigning each T to τ once, and filling the remaining Y − �

slots within τ by randomly drawing from T with replacement,

to get τ = {τ1, . . . , τY}; (4) drawing values of the demographic

parameters θA, θD1, θD2, τB , ζD1, ζD2, and m for each popu-

lation pair from their respective prior distributions; (5) scaling

each τ to get t = {t1,1, . . . , tY,kY } via Equation (4); (6) simulating

sequence data for each population pair according to the multi-

population coalescent model described above; and (7) calculat-

ing population genetic summary statistics S for each pair from

the simulated sequence matrix. The result of one draw from the

prior is the parameter vector � and vector of summary statistics

S = {S1, . . . , SY}. For �, msBayes reports � and three summary

statistics calculated from τ: the mean (E(τ)), variance (V ar (τ)),
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and dispersion index (� = V ar (τ)/E(τ)) (Hickerson et al. 2006;

Huang et al. 2011). After repeating this process n times, we have

a sample of parameter vectors, P f (�) = {�1, . . . , �n}, randomly

drawn from f (�), and the associated vectors of summary statis-

tics, S = {S1, . . . , Sn}.
The vector S∗ contains the same summary statistics calcu-

lated from the observed sequence data. During the rejection step,

only the samples from P f (�) with S that fall within the Euclidean

space Bε(S∗) are retained. We denote the set of retained samples

as Pε. Regression techniques are then used to adjust Pε for vari-

ation in the probability of the data across the retained parameter

sample space (Beaumont et al. 2002; Blum and François 2009;

Leuenberger and Wegmann 2010). The result is an estimate of the

approximate posterior, which we denote P f (�|Bε(S∗)).

ESTIMATING THE PATTERN OF DIVERGENCE TIMES

To estimate the temporal pattern of divergences among the 22 pop-

ulation pairs, we used a modified version of msBayes v20100519

(Huang et al. 2011). In the midst of our work, we identified a

bug in version 20100519 that misspecified the prior on the θA

parameters, which we subsequently corrected. This error has also

been corrected in version 20120222 of msBayes (full details in

the Supporting information).

Specifying and simulating the joint prior
To use msBayes, one must specify bτ , aθ , bθD , bθA , bm , and br

to control the prior distributions τ ∼ U (0, bτ ), θD ∼ U (aθ , bθD ),

θA ∼ U (aθ , bθA ); m ∼ U (0, bm ); and r ∼ U (0, br ). Given our is-

land system and mitochondrial data, we assumed no migration

(bm = 0) and no recombination (br = 0). Currently, msBayes only

offers the continuous uniform distribution to represent a priori

knowledge about parameters of θ and τ. Thus, broad prior distri-

butions must be used to avoid assigning zero probability density to

plausible regions of parameter space. In our case, we must choose

prior distributions that span the range of possible values for the

66 θ and 22 τ parameters. Specifically, we chose prior settings of

τ ∼ U (0, 20), θD ∼ U (0.0001, 0.1), and θA ∼ U (0.0001, 0.05).

We chose the θ settings to assure we spanned the 30 empiri-

cal estimates of θ calculated from independent data. We chose

the prior on τ to represent the large a priori uncertainty about

the divergence times for all 22 pairs of populations. Two of our

population pairs (Crocidura negrina–C. panayensis and Cyrto-

dactylus gubaot–C. sumuroi) represent distinct species, and the

species-level taxonomy of many vertebrate groups in the Philip-

pines often masks deeply divergent cryptic lineages (Brown et al.

2008; Linkem et al. 2010; Siler and Brown 2010; Welton et al.

2010; Siler et al. 2011a,b, 2012; Brown and Stuart 2012; Essel-

styn et al. 2012). Given the precedents for cryptic diversity in the

Philippines, the long geological history of the archipelago (Yumul

et al. 2008; Brown and Diesmos 2009), and the large amount of

uncertainty regarding the mutation rates and generation times of

the taxa examined, we chose bτ = 20 to avoid giving plausible

divergence times zero probability. Assuming μ = 2 × 10−8 and

applying Equation (3), this prior translates to τG ∼ U (0, 5 × 107)

in generations.

We used the msbayes.pl script to generate P f (�) with 107

random samples from f (�), using the ML estimates of the

HKY85 model parameters for each of the population pairs and

assuming μ is equal across all taxa. Each S contained π (Tajima

1983), θW (Watterson 1975), πnet (Takahata and Nei 1985), and

SD(π − θW ) (Tajima 1989) for each of the 22 population pairs.

Rejection sampling and regression adjustment
We used the acceptRej.pl script of the msBayes package and

ABCtoolbox (v1.1; Wegmann et al. 2010) to estimate Pε by spec-

ifying ε so that 1000 samples from P f (�) were within Bε(S∗) and

thus retained. ABCtoolbox and msBayes produced identical Pε.

We used two regression methods to adjust Pε and estimate the

approximate posterior, P f (�|Bε(S∗)): (1) the weighted, local-linear

regression (ABCLLR) adjustment of Beaumont et al. (2002) as im-

plemented in msBayes and (2) the general linear model (ABCGLM)

regression adjustment of Leuenberger and Wegmann (2010) as

implemented in ABCtoolbox. To avoid additional notation, we

include the multinomial logistic regression adjustment of � used

by msBayes under ABCLLR. For both methods we used the same

set of summary statistics as for the rejection step.

Vetting prior sample size and PAIC-specific analyses
To assess whether 107 samples from f (�) were sufficient, we

split the prior samples into two sets of 5 × 106 and repeated the

rejection sampling and ABCGLM-regression adjustment using each

subset. To compare the results between the two different PAICs,

we repeated the ABC methods above on the nine population pairs

from the Greater Negros–Panay PAIC and the 13 population pairs

from the Greater Mindanao PAIC (Table S1) separately; we gen-

erated 5 × 106 prior samples for these PAIC-specific analyses.

Reducing summary statistics to PLS components
In practice, using too many summary statistics may introduce

noise into ABC estimates (Joyce and Marjoram 2008; Wegmann

et al. 2009). In our case, each S contains 88 summary statistics (the

four default msBayes summary statistics for each of the 22 popula-

tion pairs). To reduce the dimensionality of S, we transformed the

88 summary statistics into 10 partial least squares (PLS) orthogo-

nal components, following an initial Box–Cox transformation of

the statistics (Wegmann et al. 2009). We used the find_pls.r

script of ABCtoolbox to define the PLS components using all

107 samples within S. Using these PLS definitions, we reduced

S and S∗ to SP L S and S∗
P L S with 10 PLS components. Here-

after, we will refer to the prior sample containing the original
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88 summary statistics as Sstats to distinguish it from SP L S . We

repeated all the rejection-sampling and regression-adjustment

procedures discussed above using SP L S and S∗
P L S . Accom-

modating the PLS components during the rejection sampling

and ABCLLR adjustment in msBayes required modifications

to the acceptRej.pl and acceptRej.r scripts provided with

the package; the modified scripts are available at https://

github.com/joaks1/msbayes-hack.

ASSESSING THE PERFORMANCE AND POWER OF

msBayes

What does “simultaneous” mean?
The PAIC model predicts a pattern of recent and clustered di-

vergences among co-distributed taxa (i.e., groups of divergence

times associated with Pleistocene glacial cycles). Using msBayes

to test this prediction assumes the method can reliably discrimi-

nate recent clustered divergences from random divergences. There

have not been any simulation-based assessments of the power of

msBayes to detect variation in divergence times. We simulated

1000 pseudo-replicate datasets (i.e., 1000 � with associated S)

with τ for each of the 22 population pairs (i.e., � = 22) randomly

drawn from a uniform distribution, U (0, τmax), where τmax was set

to: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,

1.5, 2.0, and 3.0, in 4NC generations. We used the msbayes.pl

script to generate the pseudo-replicates with all other settings the

same as when we generated P f (�).

For each of the 17,000 simulated datasets, we repeated the

same ABC inference procedures that we used for the empirical

data. Specifically, we used Sstats, ABCGLM , and 5 × 106 samples

from f (�). Using version 20100519 of msBayes (i.e., prebug

fix), we explored all of the ABC methods used for the empirical

data (ABCLLR vs. ABCGLM and Sstats vs. SP L S) as well as 2 ×
106 versus 107 samples from the prior. All of these methods

performed similarly (see Supporting information). The error in

version 20100519 of msBayes enforces a lower bound of 0.01 on

the prior for θA (see Supporting information for specifics). This

hard-coded bound was the same for simulations generating both

the pseudo-observed datasets and the prior sample (i.e., the prior

was correct). Thus, the bug should have little effect on the relative

performance of the methods on the simulated data.

ASSESSING PRIOR SENSITIVITY OF msBayes

Our simulation-based analyses reveal a bias toward inferring

clustered divergences (see Results), which could be caused by

broad priors on θ and τ (Lindley 1957). We studied this in

two ways. First, we quantified the behavior of msBayes under

the ideal conditions where the prior distributions are correct.

To do this, we simulated 100,000 datasets by drawing parame-

ter values from the prior (τ ∼ U (0, 10), θD ∼ U (0.0001, 0.05),

and θA ∼ U (0.0001, 0.025)) and analyzed these datasets using

2 × 106 samples drawn from the same prior distributions. For all

these simulations, we used the default distribution on � (i.e., dis-

crete uniform from 1 to Y ). To greatly reduce computational time,

these simulations used a single 1000 bp locus sampled from 10

individuals from 10 population pairs. We were particularly inter-

ested in the posterior probability of a single divergence time for

each of these simulated datasets. So, we assigned the 100,000 es-

timates of the posterior probability of one divergence event (i.e.,

p(� = 1|Bε(S∗))) to 20 bins of width 0.05, and plotted the es-

timated p(� = 1|Bε(S∗)) of each bin against the proportion of

replicates in that bin with a true value of � = 1 (Huelsenbeck

and Rannala 2004). We repeated this exercise using the alterna-

tive criterion for one divergence event, �̂ < 0.01 (Hickerson et al.

2006).

Our second evaluation of prior sensitivity attempted to assess

the performance of msBayes under optimal real-world conditions.

In this case, the priors used are not known to be correct, but

represent the narrowest possible prior distributions (i.e., priors

informed by the data). We repeated the simulation-based power

analyses outlined above using two additional, highly informative

prior settings: (1) τ ∼ U (0, 10), θD ∼ U (0.0005, 0.04), and θA ∼
U (0.0005, 0.02); and (2) τ ∼ U (0, 5), θD ∼ U (0.0005, 0.04),

and θA ∼ U (0.0005, 0.02). For both prior settings, we generated

5 × 106 samples. Using the informed θ priors, we simulated an ad-

ditional 17,000 pseudo-observed datasets with divergence times

randomly drawn from the same series of uniform distributions

(i.e., τmax) described above. The priors on θ match the range of

θ estimates from our empirical data (Tables S2 and S3). Assum-

ing μ = 2 × 10−8, the priors on τ translate to τG ∼ U (0, 107)

and τG ∼ U (0, 5 × 106) in units of generations of the reference

population, respectively. If we assume one generation per year,

the latter prior is very similar to our range of gene divergence

estimates (0.2–4 mybp; Fig. S1), and thus, given the uncertainty

in generation times and mutation rates for the taxa we examined,

is likely too narrow (i.e., excluding plausbile values).

We must emphasize that we only use such informed priors

here to represent the narrowest possible priors for a real-world

application of msBayes. Basing priors on estimates from the data

is not a fully Bayesian statistical procedure, and we are not advo-

cating such an approach. Whereas empirical Bayes, also known

as maximum marginal likelihood, is a commonly used statisti-

cal framework for point estimation, empirical Bayesian estimates

of the posterior distribution of parameters are too narrow and

often inappropriately shaped and off-center (Morris 1983; Laird

and Louis 1987; Carlin and Gelfand 1990). This is because they

fail to account for the uncertainty in estimating the prior. Many

post-hoc correction methods have been proposed for estimating

frequentist-like confidence intervals from empirical Bayesian es-

timates of the posterior distribution of parameters (Morris 1983;

Laird and Louis 1987, 1989; Carlin and Gelfand 1990; Hwang
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Table 2. Summaries of the posterior estimates from all msBayes analyses run with prior settings of τ ∼ U(0, 20), θD ∼ U(0.0001, 0.1),

and θA ∼ U(0.0001, 0.05). Mode estimates of the dispersion index (	) and mean (E (τ)) of divergence-time vector, τ, and the number of

unique divergence times (
) are provided, followed in square brackets by the 95% highest posterior density for ABCGLM analyses and the

2.5% and 97.5% quantiles for the ABCLLR analyses. The estimated posterior probability for the one divergence model ( p(
 = 1|Bε(S∗)))

is given, followed in parentheses by the Bayes factor of the 
 = 1 model compared to all other models. 	 and E (τ) are in units of NC

generations.

Prior sample Analysis �̂ ˆE(τ) �̂ p(� = 1|Bε(S∗))

Sstats,N=1×107 ABCLLR 0.0 [0.0–1.84×10−4] 0.064 [0.043–0.092] 1.0 [1.00–1.00] 1.000 (∞)1

Sstats,N=1×107 ABCGLM 1.29×10−4 [−1.08×10−6–1.18×10−3] 0.063 [0.039–0.092] 1.0 [1.00–1.06] 1.000 (∞)1

Sstats,N=5×106 ABCGLM −8.36×10−17 [−5.49×10−6–5.89×10−3] 0.062 [0.035–0.092] 1.0 [1.00–1.06] 1.000 (∞)1

Sstats,N=5×106 ABCGLM 6.53×10−4 [−2.18×10−5–1.89×10−3] 0.071 [0.042–0.103] 1.0 [1.00–1.06] 0.999 (2.1×104)
SP L S,N=1×107 ABCLLR 0.0 [0.0–6.38×10−4] 0.084 [0.036–0.136] 1.0 [1.00–1.00] 0.993 (2979)
SP L S,N=1×107 ABCGLM −9.80×10−17 [−7.56×10−6–7.59×10−3] 0.082 [0.024–0.127] 1.0 [1.00–1.14] 0.977 (892)
SP L S,N=5×106 ABCGLM −9.09×10−17 [−1.11×10−5–1.31×10−2] 0.064 [0.013–0.126] 1.0 [1.00–1.13] 0.992 (2604)
SP L S,N=5×106 ABCGLM −9.80×10−17 [−7.64×10−6–8.26×10−3] 0.086 [0.029–0.143] 1.0 [1.00–1.08] 0.966 (597)

Thirteen Mindanao population pairs
Sstats,N=5×106 ABCLLR 2.56×10−3 [0.0–6.47×10−3] 0.079 [0.034–0.122] 1.0 [1.00–1.00] 0.987 (1594)
Sstats,N=5×106 ABCGLM −8.03×10−17 [−6.00×10−6–1.36×10−2] 0.070 [0.027–0.115] 1.0 [1.00–1.08] 0.962 (532)

Nine Negros–Panay population pairs
Sstats,N=5×106 ABCLLR 0.0 [0.0–1.08×10−2] 0.060 [0.012–0.099] 1.0 [1.00–1.00] 1.000 (∞)1

Sstats,N=5×106 ABCGLM −5.96×10−17 [−5.14×10−5–4.53×10−2] 0.055 [0.014–0.095] 1.0 [1.00–1.12] 0.999 (2.1×104)

1An estimate of 1.0 for a posterior probability is an artifact of sampling error.

et al. 2009), but none are implemented in msBayes, and none

would correct model choice estimates (e.g., posterior probabili-

ties of models and Bayes factors).

A NOTE ON COALESCENT UNITS

Because our empirical data are comprised of mitochondrial se-

quences, our estimates of E(τ) and � are in coalescent units of

NC generations. However, the coalescent units of our simulated

pseudo-observed data are arbitrary and, via Equation (3), can be

converted into generations by assuming μ (i.e., the conversion is

independent of the inheritance constant of the coalescent units).

When reporting our simulation results in coalescent units, we

write “4NC ” generations, because most users of msBayes will be

using diploid, biparentally inherited loci.

Results
ESTIMATES OF GENE DIVERGENCES AND θ

Our estimates of the gene divergence times range from approxi-

mately 0.2 to 4 mybp, with 16 of the 22 posterior mean estimates

within the past million years (Fig. S1). Our estimates of θ from

independent population samples range from 0.0011 to 0.0181

(Table S2); our estimates from the 44 populations we analyzed in

msBayes had a greater range of 0.0003–0.0381 (Table S3).

EMPIRICAL msBayes ESTIMATES UNDER BROAD

PRIORS

When using prior settings of τ ∼ U (0, 20), θD ∼ U (0.0001, 0.1),

and θA ∼ U (0.0001, 0.05), our msBayes results strongly support

one recent divergence event for all 22 population pairs, regardless

of the method of postsampling regression (ABCLLR or ABCGLM)

or summary statistic matrix (Sstats or SP L S) used (Fig. S2 and

Table 2). Consistent with one divergence event, all methods yield

estimates of the dispersion index of population divergence times

(�) of essentially zero (Table 2). �̂ < 0.01 is commonly used as a

criterion for one divergence time shared by all pairs of populations

(Hickerson et al. 2006).

Estimates of the time of the divergence event ( ˆE(τ)) range

from approximately 0.04 to 0.1 coalescent units ago (2). Assum-

ing μ = 2 × 10−8 and one generation per year, this translates to

100,000–250,000 years ago, consistent with Pleistocene-driven

diversification. We used simulations to reject the possibility that

these results can be explained by a model of no divergence (i.e.,

panmixia between the populations of each pair; see Supporting

information).

ABCLLR and ABCGLM estimates of E(τ) are almost iden-

tical, regardless of whether using Sstats or SP L S . Both regres-

sion methods had larger confidence intervals when using SP L S

(Table 2). Estimates based on 5 × 106 and 107 prior samples are

9 9 8 EVOLUTION APRIL 2013



CAUTION FOR ABC MODEL SELECTION

very similar, regardless of whether Sstats or SP L S are used (Ta-

ble 2). Estimates from the Greater Mindanao and Negros–Panay

PAICs were similar to the combined analyses (Table 2).

SIMULATION-BASED ASSESSMENT OF

“SIMULTANEOUS”

Accuracy and precision of estimates with broad priors
The precision of the ABC estimates of E(τ) and � is low, espe-

cially when the true divergence times are more recent (Figs. 1 and

S3). Also, msBayes is less accurate and precise in estimating �

(Fig. 1) than E(τ) (Fig. S3). When τmax is less than 0.9 coales-

cent units, msBayes tends to underestimate �, whereas it tends to

overestimate � when τmax is 1.0 or greater (Fig. 1). From our sim-

ulation results using version 20100519 of msBayes (prebug fix),

all combinations of summary statistics and regression-adjustment

methods are inaccurate for estimating � across the τmax we sim-

ulated (Figs. S17– S20).

Power of msBayes

The power of msBayes to detect variation in divergence times is

low at phylogeographic time scales (Figs. 2 and 3). If we judge

the procedure by conditions that lead to ≤ 5% of the simula-

tion replicates estimating one divergence event, then we find that

msBayes is unable to reject one divergence event based on �̂

when τmax is less than 1.3 coalescent units (i.e., 5.2NC genera-

tions; Fig. 2). This translates to msBayes inferring a single diver-

gence event more than 5% of the time when the 22 population

pairs diverged randomly over the past three million generations

(assuming μ = 2 × 10−8).

msBayes does better based on �̂, but still cannot reject one

divergence when τmax is less than 0.8 coalescent units (i.e., 3.2NC

generations, or two million generations assuming μ = 2 × 10−8;

Fig. 3). This lack of power was not due to an overly stringent

threshold (0.01). The true values of � from the simulations un-

der all τmax are consistent with multiple divergence times (i.e.,

greater than 0.01; Fig. S4). Thus, based on the criterion �̂ < 0.01,

msBayes would have rejected one divergence event for all the τmax

values we simulated if it was able to accurately estimate �. The

lack of power is due to the bias of msBayes to underestimate � at

recent divergence times (Fig. 1).

We can also assess power of the method by examining

what conditions lead to ≤ 5% of the simulation replicates es-

timating strong support for � = 1. We use a Bayes factor of

greater than 10 for the one divergence model compared to all

other models (B F�=1,� �=1 > 10) as a threshold for strong sup-

port (Jeffreys 1935, 1961). According to this test, the method

cannot reject one divergence when τmax is less than 1.3 coa-

lescent units (Fig. 5). Thus, assuming μ = 2 × 10−8, msBayes

strongly supports one divergence event more than 5% of the

time when divergence times are random over the past three mil-

lion generations. If we increase our threshold for strong sup-

port to a posterior probability greater than 0.95 (B F�=1,� �=1 >

399), msBayes is still unable to reject one divergence event

when τmax is less than 0.8 coalescent units (two million

generations).

Using the criteria above based on the inference of one di-

vergence event (or strong support for one divergence event) is

quite generous, because an inference of �̂ > 0.01 or �̂ > 1 is not

equivalent to success of the method. This is clearly illustrated by

Figure 2. msBayes infers highly clustered divergence times across

all of the τmax we simulated. For example, even when divergence

times are random over the past three coalescent units (7.5 million

generations), the most probable inference of msBayes is still only

two divergence events (i.e., �̂ = 2).

Based on our simulation results using version 20100519 of

msBayes, the power to detect variation in divergence times was

low under all combinations of summary statistics, regression-

adjustment methods, and prior sample sizes we explored (Figs.

S21–S27 and S32–S34).

PRIOR SENSITIVITY OF msBayes

Simulation results
Under the ideal conditions when the priors are correct, msBayes

provides reasonable estimates of the posterior probability of one

divergence event (Fig. 4). Based on � and � results from Pε

(i.e., unadjusted estimates), msBayes overestimates the posterior

probability of one divergence event when the true probability

is less than ≈ 0.6, and slightly underestimates it when the true

probability is greater than ≈ 0.6 (Fig. 4A and B). However, re-

gression adjustment of � using both ABCLLR and ABCGLM causes

extreme underestimation of the posterior probability of one diver-

gence event (Fig. 4D and F). Regression adjustment of � has the

same affect, but less extreme (Fig. 4C and E). Thus, � is a bet-

ter estimator of the posterior probability of one divergence event

than � (Fig. 4C– F). Note that the adjustment of � in msBayes

(using multinomial logistic regression) failed for approximately

2% (2043) of the simulations, almost all of which had a true �

of one. Based on the unadjusted estimates, these failures would

have been underestimates of the posterior probability of � = 1.

Thus, the plotted ABCLLR results (Fig. 4C) are skewed due to these

failed replicates, and should look more like the ABCGLM results

(Fig. 4E). Overall, when the priors are correct, regression-adjusted

estimates of the posterior probability of one divergence event are

downward biased. This is consistent with our observation of the

switch in bias of � estimates; as τmax becomes more similar to

the prior, the bias switches from upward to downward (Fig. 1).

When the priors are informed by the data (i.e., narrower

than possible under real-world applications of msBayes), the

method’s power is similar to using broad priors. Based on

estimates of �, msBayes cannot reject one divergence event
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Figure 1. Accuracy and precision of 	 estimates from simulation where τ (in 4Nc generations) for 22 population pairs is drawn from a

series of uniform distributions, τ ∼ U(0, τmax). The proportion of estimates less than the true value ( p(	̂ < 	)) is given for each τmax. All

estimates were obtained using ABCGLM and Sstats. Each plot represents 1000 simulation replicates using the same 5 × 106 samples from

the prior. Prior settings were τ ∼ U(0, 20), θD ∼ U(0.0001, 0.1), and θA ∼ U(0.0001, 0.05).

when τmax is less than 1.3 coalescent units (1.3 million gen-

erations, assuming μ = 2 × 10−8) when prior settings are τ ∼
U (0, 10), θD ∼ U (0.0005, 0.04), and θA ∼ U (0.0005, 0.02), and

1.2 coalescent units when the prior settings are τ ∼ U (0, 5),

θD ∼ U (0.0005, 0.04), and θA ∼ U (0.0005, 0.02) (Figs. S9 and

S10). Also, under both informed prior settings, msBayes still in-

fers highly clustered divergences for all the τmax we simulated

(Figs. S9 and S10). The bias of msBayes to underestimate � at

recent divergence times remains when using the informed priors

(Figs. S7 and S8). As a result, the lack of power to detect variation
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Figure 2. Histograms of the estimated number of divergence events (
̂) from simulations where τ (in 4NC generations) for 22 population

pairs is drawn from a series of uniform distributions, τ ∼ U(0, τmax). The estimated probability of inferring one divergence event, p(
̂ = 1),

is given for each τmax. All estimates were obtained using ABCGLM and Sstats. Each plot represents 1000 simulation replicates using the

same 5 × 106 samples from the prior. Prior settings were τ ∼ U(0, 20), θD ∼ U(0.0001, 0.1), and θA ∼ U(0.0001, 0.05).

in divergence times based on � estimates also remains (Figs. S11

and S12). Specifically, the method cannot reject a single diver-

gence event when τmax is less than 0.9 coalescent units (900,000

generations, assuming μ = 2 × 10−8) when the prior settings are

τ ∼ U (0, 5), θD ∼ U (0.0005, 0.04), and θA ∼ U (0.0005, 0.02),

and 0.8 coalescent units when the prior settings are τ ∼ U (0, 10),

θD ∼ U (0.0005, 0.04), and θA ∼ U (0.0005, 0.02) (Figs. S11 and

S12).
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Figure 3. Histograms of the estimated dispersion index of divergence times (	̂) from simulations where τ (in 4NC generations) for 22

population pairs is drawn from a series of uniform distributions, τ ∼ U(0, τmax). The threshold for one divergence event (Hickerson et al.

2006) is indicated by the dashed line, and the estimated probability of inferring one divergence event, p(	̂ ≤ 0.01), is given for each τmax.

All estimates were obtained using ABCGLM and Sstats. Each plot represents 1000 simulation replicates using the same 5 × 106 samples

from the prior. Prior settings were τ ∼ U(0, 20), θD ∼ U(0.0001, 0.1), and θA ∼ U(0.0001, 0.05).
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Figure 4. The relationship between the posterior and true probability of (A, C, and E) 
 = 1 and (B, D, and F) 	 < 0.01 based on 100,000

simulations. The results are based on the (A and B) unadjusted (Pε), (C and D) ABCLLR-adjusted, and (E and F) ABCGLM-adjusted posterior

estimate from each simulation replicate. All simulated replicates were generated under the model prior (i.e., the ideal situation where

the prior model is correct). Prior settings were τ ∼ U(0, 10), θD ∼ U(0.0001, 0.05), and θA ∼ U(0.0001, 0.025), and the number of samples

from the prior was 2 × 106. The simulated data structure was 10 population pairs, with a single 1000 bp locus sampled from 10 individuals

from each population. The 100,000 estimates of the posterior probability of one divergence event were assigned to 20 bins of width 0.05.

The estimated posterior probability of each bin is plotted against the proportion of replicates in that bin with a true value consistent

with one divergence event (i.e., 
 = 1 or 	 < 0.01).

EVOLUTION APRIL 2013 1 0 0 3



JAMIE R. OAKS ET AL.

Ψ

N
um

be
r 

of
 d

iv
er

ge
nc

e 
m

od
el

s
0

20
40

60
80

10
0

12
0

1 3 5 7 9 11 13 15 17 19 21

A

Ψ

f(
M

Ψ
,i
)

0.
00

0.
01

0.
02

0.
03

0.
04

1 3 5 7 9 11 13 15 17 19 21

B

Figure 5. The (A) number of unique divergence models across all possible numbers of divergence-time categories (
) when Y = 22, and

(B) the prior probability of any one of the unique divergence-time models within each 
.

Empirical results
The results of msBayes analyses of the empirical data are very

sensitive to the different prior settings we explored (Table 3).

The estimates of � and E(τ) vary by over two and one order of

magnitude, respectively, and the estimated 95% highest posterior

density intervals do not overlap between some of the analyses. Our

estimate of the posterior probability of one divergence event is es-

sentially one when using appropriately broad priors, but is nearly

zero with narrow priors (Table 3). Thus, we find strong support for

different biogeographic scenarios (i.e., one divergence vs. mul-

tiple divergences) under different prior distributions. However,

under the informed priors, msBayes still infers highly clustered

divergence times (�̂ = 2; Table 3), suggesting the estimates un-

der all three prior settings may suffer from the biases revealed by

our simulation results.

Discussion
POWER AND BIAS ISSUES

Given the strong support for either one or two shared recent

divergence(s) among the 22 taxon pairs (Tables 2 and 3), it would

have been easy to accept the empirical results of msBayes as

evidence for climate-driven diversification across the Philippine

Archipelago. However, our simulations demonstrate a bias in the

msBayes model toward inferring clustered divergences among

population pairs when the divergences are random and relatively

recent. We found msBayes always inferred temporally clustered

divergences even when the taxon pairs diverged randomly over

the past 12NC generations (Fig. 2L). To put this in real time,

assuming a mutation rate of 2 ×10−8 and a one year generation

time, msBayes consistently infers an interesting biogeographical

scenario when the taxon pairs diverged randomly over the past 7.5

million years. Also, msBayes will often (>5% of the time) infer

the extreme case of one divergence event with strong support

when the taxon pairs diverged randomly over the past 3.2NC

generations (two million years) (Figs. 3 and S5).

The bias did not improve when using empirically guided

prior distributions (Figs. S7, S8, S11, and S12). Thus, our results

show that even when using priors that are more informative than

could be expected in a real-world application of msBayes, the

method tends to infer simultaneous divergence too frequently.

msBayes is primarily used for comparing shallow diver-

gences (Hickerson et al. 2006; Huang et al. 2011), which, accord-

ing to our results, is when the method can be the most misleading.

Due to the stochasticity of coalescent and mutational processes, a

large variance in genetic divergence is expected among recently

co-diverged taxa. Thus, any inference method for estimating di-

vergence times is expected to struggle when applied to recently

diverged taxa (and over much of the range of parameters we sim-

ulated here). Ideally, a method should express uncertainty in the

face of such large expected variance. However, our simulations

indicate that msBayes often returns strong support for the spurious

conclusion of one divergence event (Fig. S5).

These findings are worrisome, because co-divergence is often

a biologically interesting result that is interpreted as evidence for

a shared historical event or barrier. Our results suggest that any

application of msBayes on recently diverged taxa is very likely to

result in clustered divergences (Figs. 2, S9, and S10), and thus an

“interesting” biogeographical interpretation.

PRIOR SENSITIVITY OF EMPIRICAL ESTIMATES

We find strong support for contradictory hypotheses (i.e., one

vs. multiple divergence events) and very different parameter es-

timates under the prior settings we explored (Table 3). This
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sensitivity is problematic, and introduces another challenge to

interpreting the results of msBayes analyses. When different prior

settings yield contrasting results, it is difficult to draw biologically

meaningful conclusions.

The same sensitivity to the prior settings was not observed

in our simulation-based results. This is not unexpected. All of the

pseudo-observed data were generated by the msBayesmodel, with

all of the parameters (except τ) drawn from the prior distributions

(i.e., the priors were correct). As a result, changes in the priors

for the parameters θD and θA were reflected in the simulated

data. This, of course, is not true for our empirical data, where

the parameter values are unknown. Thus, the empirical estimates

are expected to be more variable under the different prior settings

than the simulation results. Also, the empirical data likely violate

assumptions of the msBayes model that are met by the simulated

data, which could contribute to the prior sensitivity we observed

with the empirical data.

The empirical estimates of � switched from one to two be-

tween the broad and informed priors (Table 3). Such a switch

occurred for some of the pseudo-replicate datasets simulated at

larger τmax values and subsequently analyzed under a prior of

τ ∼ U (0, 10) versus τ ∼ U (0, 5) (Figs. S9 and S10). Thus, some

of the prior sensitivity we observed in analyses of the empirical

data is also evidenced in the simulation results.

Our correction of the error in version v20100519 of msBayes

concerning the θA prior also had an impact on the results of the

empirical analyses. Our � estimates vary as much as twofold

before and after this error was corrected (Table S5). Given the

sensitivity of our results to this error and prior settings, and the

biases revealed by our simulations, we suggest that previously

published results of msBayes be treated with some caution.

POSSIBLE CAUSES OF BIAS

msBayes implements a model selection procedure by approximat-

ing the posterior probabilities for different divergence models. The

total number of unique divergence-time models, or the number of

possible ways to assign Y taxon pairs into � divergence-time

categories, is calculated by the Bell number (Bell 1934)

BY =
Y∑

�=1

⎡
⎣ 1

�!

�−1∑
j=0

(−1) j

(
�

j

)
(� − j)Y

⎤
⎦ . (6)

The number of unique models is enormous, even with a moderate

number of taxon pairs (4,506,715,738,447,323 unique divergence

models when Y = 22). The model implemented in msBayes takes

advantage of the independence of the τ parameters and empirical

sample sizes, allowing exchangeability of the summary statistics

simulated under the various empirical sample sizes (Hickerson

et al. 2006; Huang et al. 2011). This allows the identity/order

of each τ within τ to be ignored, which greatly reduces the
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divergence model space (1002 divergence models when Y = 22).

The total number of unique divergence-time models reduces to

the number of partitions of Y (i.e., the integer partition), or the

number of ways you can write Y as a sum of positive integers

when the order of the addends does not matter (Sloan 2011a,b).

The closed-form expression for the integer partition is beyond

the scope of this article (but see Malenfant 2011), but functions

written in Python to calculate it are provided in the Supporting

Information.

The prior on divergence models
In msBayes, the prior on � is discrete uniform from 1 to Y , but it is

not uniform over all the possible divergence models. For example,

in our case � = 1 and � = 22 both represent a single divergence

model, whereas � = 6 comprises 136 models. Generally, we can

calculate the prior probability of the of the ith unique divergence

model of class � by

f (M�,i ) = f (�)
1

A(Y, �)
, (7)

where f (�) is the prior probability of �, and A(Y, �) is the num-

ber of partitions of Y into � divergence times (i.e., the number of

unique divergence models for a given �; Supporting Information;

Sloan 2011b). In the case of msBayes, the prior on � is uniform

discrete, so Equation (7) simplifies to

f (M�,i ) = 1

Y × A(Y, �)
. (8)

The distribution of the number of divergence models across �,

and corresponding prior probability distribution of divergence-

time models is shown in Figure 5. In our case, the M�=1,i model

is 136 times more probable than a M�=6,i model, a priori. The

combination of the prior distribution over M�,i (Fig. 5B) and

potentially small marginal likelihoods of models with large �

(discussed below) could create a strong bias toward models with

small �. An alternative prior that places a uniform probability

across each possible divergence model, rather than across �,

would result in a lower posterior for the single divergence event

scenario whenever Y > 3.

Decreasing marginal likelihoods with increasing �

The preference for clustered divergence models (i.e., small �)

implies that the models with larger � have lower marginal likeli-

hoods. The marginal likelihood of a model is an integral over

the entire parameter space of the likelihood weighted by the

prior probability density. By using broad, uniform priors for each

divergence-time parameter, we force models with many distinct

divergence times to integrate over a much larger parameter space.

If most of the parameter space has low likelihood, the marginal

likelihood will be small. For example, consider the comparison of

the models with � = 1 and � = 22. In our analyses, each of the

22 divergence-time parameters of the � = 22 model has a uni-

form prior from zero to 20 coalescent units. If most of the prior

space of these divergence-time parameters has low likelihood den-

sity, integrating over the vast 22-dimensional τ parameter space

will result in a low marginal likelihood for the � = 22 model

compared to the model with only one τ parameter.

Bayesian parameter estimation is often relatively robust to

the choice of prior, particularly if the prior is vague. But model

selection in the Bayesian context can be strongly influenced by

excessively broad priors on nuisance parameters (Lindley 1957;

Jeffreys 1961). This sensitivity to priors should hold for fully

Bayesian model selection and for ABC methods. It is not a weak-

ness of the analysis paradigm, but merely an indication that the

prior probability statements used for nuisance parameters must be

carefully chosen.

If prior sensitivity in our analyses caused the bias toward

small �, then a simulation study in which all parameters are

drawn from the prior distributions used in the analysis (Huelsen-

beck and Rannala 2004) should result in good performance with

respect to the posterior probability of different values of �. Our

results demonstrate that when the priors are correct (i.e., there

is no model misspecification) msBayes tends to be biased in the

opposite direction and underestimates the posterior probability of

one divergence event (Fig. 4C– F). This suggests the bias toward

clustered divergences when the prior on τ is broader than the

true underlying distribution is caused, at least in part, by broad

uniform priors reducing the marginal likelihoods of models with

more τ parameters (i.e., larger �).

However, our results suggest that, in practice, the uniform

prior distributions may never be narrow enough to obviate the bias

of msBayes toward clustered divergences. Even when we tested

uniform priors more informative than could be expected in prac-

tice, the bias remained (Figs. 1–3 and S7–S12). Perhaps more flex-

ible probability distributions (e.g., gamma or log-normal) could

better represent prior knowledge about θ and τ, while not placing

too much prior probability density in regions of parameter space

with low likelihood. Exploring alternative prior distributions may

improve performance.

Insufficient sampling of parameter values
It is also possible that the estimates of the posterior probability

for models with large � will be inaccurate because of insufficient

sampling of parameter values. If the prior over � is uniform,

models with larger prior parameter space (i.e., larger �) will be

less densely sampled. It is unclear if this phenomenon would bias

the analysis toward models with fewer τ parameters or merely lead

to higher variance in the estimates of the posterior probabilities.

If this phenomenon is causing the bias, we expect analyses to be

sensitive to the number of samples drawn from the prior. From our

empirical analyses, we do not see such sensitivity when comparing

prior sample sizes of 5 × 106 and 107. Also, our simulation results
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were unaffected by prior sample sizes of 2 × 106, 5 × 106, and

107 (see Supporting information for full details). Thus, it seems

unlikely that insufficient sampling of parameter space contributed

to the bias.

Problems with ABC model choice
Recent work by Robert et al. (2011) has shown that ABC will

often be biased in model choice. When summary statistics are

insufficient for discriminating among competing models, which

is the case for most empirical applications, ABC can be an in-

consistent estimator of the models’ posterior probabilities and

can thus prefer the wrong model. This can occur even when the

summary statistics are sufficient for each model under consider-

ation (Robert et al. 2011). The magnitude of the bias caused by

the insufficiency of the statistics across models is unknown in

most empirical settings, so there is no possibility of a correction

factor (Robert et al. 2011). Thus, this problem does not have an

obvious fix.

Whether the bias we observed is due to theoretical short-

comings of ABC model choice, broad uniform priors on nuisance

parameters, the prior on divergence models, or some combination

of these factors requires further investigation.

GENERAL RECOMMENDATIONS

Despite the limitations we identified, we conclude that msBayes

can be a useful comparative phylogeographic tool. For example,

msBayes can be used to test biogeographic hypotheses that require

low temporal precision to be differentiated (i.e., on the scale of

millions of generations). Alternatively, given the bias toward clus-

tered divergences, an inference of no co-divergence (e.g., Topp

and Winker 2008) is likely robust. Also, there are several avenues

to explore that might mitigate the problems we revealed, includ-

ing (1) priors on τ that are more uniform over divergence models

(rather than classes of models), (2) more flexible priors on θ and τ

parameters (e.g., gamma or log-normal distributions) that might

increase the relative marginal likelihoods of models with more

divergence times, and (3) adding more loci. The degree to which

our results are contingent upon the number of taxon pairs and

sample sizes simulated here also needs to be explored. However,

our results clearly demonstrate the need for (1) power analyses to

accompany any inference of clustered divergences using msBayes

and (2) analyses exploring the sensitivity of the results to prior

distributions.

Conclusions
The hierarchical ABC model implemented in msBayes provides an

appealing method of inferring the effects of historical events on di-

versification. Our goal was to use the model to test whether Pleis-

tocene climate cycles and associated sea-level oscillations caused

diversification across the islands of the Philippine Archipelago.

Despite strong support for the recent simultaneous divergence of

22 pairs of populations across the Philippines, our simulation-

based power analyses demonstrate that we were likely to in-

fer such results. Our simulations show that msBayes will infer

highly clustered divergence times when populations diverged ran-

domly over the past 12NC generations (7.5 million generations if

μ = 2 × 10−8), and will often (>5% of replicates) infer the ex-

treme case of one divergence event with high posterior probability

(>0.95) when divergences were random over the past 3.2NC gen-

erations (two million generations). For our empirical system, this

lack of power precludes us from ascribing biological processes to

the results we obtained from msBayes. We also show that results

of msBayes can be sensitive to prior distributions placed on pa-

rameters. We suggest any results of msBayes that are not shown to

be robust to prior settings should be treated with caution. Further-

more, simulation-based power analyses should be used in cases in

which clustered divergences are inferred. These analyses can pro-

vide useful guides for the range of divergence times which could

have occurred while still being judged to be “simultaneous.”
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Figure S1. Plot of the mean and 95% highest posterior density of gene divergence times estimated for each of the 22 population

pairs using a fixed rate of 2 × 10−8 substitutions per site per year in BEAST.

Figure S2. The estimated joint posterior densities of the dispersion index (�) and mean (E(τ)) of divergence time vector, τ, using

(A and B) ABCLLR and (C and D) ABCGLM regression methods, and (A and C) the msBayes summary statistics and (B and D)

partial least squares (PLS) components of the msBayes summary statistics.
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for 22 population pairs is drawn from a series of uniform distributions, τ ∼ U (0, τmax).

Figure S4. Histograms of the true dispersion index of divergence times (�) from simulations where τ (in 4NC generations) for 22

population pairs is drawn from a series of uniform distributions, τ ∼ U (0, τmax).

Figure S5. Histograms of the estimated posterior probability of one divergence event, p(ψ = 1 | Bε(S∗)), from simulations where

τ (in 4NC generations) for 22 population pairs is drawn from a series of uniform distributions, τ ∼ U (0, τmax).

Figure S6. Results of 1000 simulation replicates of no divergence between population pairs, using Sstats, ABCGLM , and 5 × 106

samples from the prior.

Figure S7-S8, S17-S20, S30-S31, S35-S36. Accuracy and precision of � estimates from simulations where τ (in 4NC generations)

for 22 population pairs is drawn from a series of uniform distributions, τ ∼ U (0, τmax).

Figure S9, S10, S21, S22, S23, S32, S37, S38. Histograms of the estimated number of divergence events �̂ from simulations

where τ (in 4NC generations) for 22 population pairs is drawn from a series of uniform distributions, τ ∼ U (0, τmax).

Figure S11, S12, S24, S25, S26, S27, S33, S34, S39, S40. Histograms of the estimated dispersion index of divergence times

(�̂) from simulations where τ (in 4NC generations) for 22 population pairs is drawn from a series of uniform distributions,

τ ∼ U (0, τmax).

Figure S41. The relationship between the posterior and true probability of (A) � = 1 and (B) � < 0.01 based on 100,000

simulations.
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