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1 |  INTRODUCTION

Oceanic island systems are important models for the study 
of evolution because they provide replicated areas of spe-
ciation (Wallace,  1860, 1863; Whittaker & Fernández-
Palacios, 2007). Speciation on islands has been studied both 
in the context of their isolation from other landmasses (e.g. 
Demos et al., 2016; Roberts et al., 2011) and the diversifi-
cation of species within islands (e.g. Giarla et  al.,  2018; 
Kyriazis et  al.,  2017). Our understanding of the mecha-
nisms of speciation in most taxa, however, is limited by in-
adequately resolved taxonomy and incomplete knowledge of 
geographic distributions at scales relevant to the speciation 

process (Dufresnes et al., 2019; Eldridge et al., 2018; Feulner 
et al., 2006; Giarla et al., 2018; Shen et al., 2019).

At the interface of Asia and Australia, the island of 
Sulawesi is a prime natural laboratory for the study of bio-
geography and biodiversity (Carstensen et al., 2012; Lohman 
et al., 2011; Rosauer & Jetz, 2015; Whitten et al., 2012). It 
is the largest isolated island between Asia and Australia and 
has remained separated from other landmasses by deep ocean 
channels throughout the last 10 million years of its forma-
tion (Nugraha & Hall, 2018). The marine barriers that iso-
late Sulawesi are traced by Wallace's Line to the west and 
Weber's Line to the east. These lines are recognized as two 
of the starkest biogeographic transitions on earth (Lohman 
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Abstract
Sulawesi is the largest, most topographically complex island in the Wallacean bio-
geographic zone, and it has a rich fauna of endemic small mammals, dominated by 
rodents of the family Muridae. Among murids, the Bunomys division is the most 
species-rich radiation on Sulawesi. In total, the division contains 11 genera and 32 
species, five and 20 of which are endemic to Sulawesi. We combined a five-locus 
phylogeny and linear cranial morphology to better understand the taxonomy and 
local scales of endemism within the Bunomys division on Sulawesi. Phylogenetic 
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and inferred Paruromys as sister to the type species of Taeromys (T. celebensis). We 
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was once placed, and returning Paruromys dominator to Taeromys. Within three 
species, F. fratrorum, T. callitrichus, and T.  taerae, we recovered Pleistocene age 
divergences between populations sampled across the northern peninsula of Sulawesi; 
divergence between western and eastern populations of F. fratrorum may reflect the 
existence of two species.
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et al., 2011; Whitten et al., 2012). While the age and isola-
tion of Sulawesi provide the primary mechanisms explaining 
the island's high endemism (Lohman et al., 2011), its com-
plex geography has promoted within-island speciation in 
many animal clades (Eldridge et al., 2018; Evans et al., 1999, 
2003; Evans, et al., 2003; Fooden, 1969; Giarla et al., 2018; 
Linkem et  al.,  2013; von Rintelen et  al.,  2014). Sulawesi's 
geography features a peculiar shape, consisting of a central 
core and four long peninsulas. The island's mountainous ter-
rain holds 20 summits >2,500 m (Hall, 2011; Voris, 2000; 
Whitten et al., 2012). Across Sulawesi, seven areas of ende-
mism (AoE) are largely defined by the four peninsulas and 
the central core, with the northern peninsula split into three 
AoEs (Figure  1). Several disparate taxonomic groups have 
species and divergent populations restricted to a single AoE 
(Evans et al., 2008; Evans, et al., 2003; Fooden, 1969). The 
prevalence of divergent lineages among these AoEs reflects 

the importance of within-island speciation and shared mech-
anisms of isolation as a source of diversity on Sulawesi. 
Episodic marine incursion into the areas in the AoE bound-
aries, habitat variation associated with elevational gradients 
on the island's mountains and climatic variation near AoE 
boundaries may have fostered speciation and contributed 
to the shared patterns of endemism (Eldridge et  al.,  2018; 
Evans, et al., 2003; Giarla et al., 2018).

The northern peninsula of Sulawesi is the largest and 
most biogeographically complex peninsula on Sulawesi. For 
all but the last 1–2 Ma of its subaerial history, the northern 
peninsula was an island or island chain isolated from the 
rest of Sulawesi (Nugraha & Hall, 2018). Its complex geo-
logical history is reflected by its division into three areas 
of endemism (Figure  1; NE, NC, and NW AoEs) (Evans 
et al., 2008; Evans, et al., 2003). These AoEs are separated 
by the Gorontalo divide, a lowland area with relatively dry 

F I G U R E  1  Map of Sulawesi showing 
Areas of Endemism (AoE; boundaries 
represented by black bars), the Gorontalo 
divide (black arrow), elevational variation 
and sampling localities for molecular 
analyses. The sampling localities were 
labelled with AoE abbreviation: WC (West-
Central), SW (Southwest), SE (Southeast), 
EC (East-Central), NW (North-west) and 
NE (North-east) and a unique identification 
for sampling localities within each AoE 
region (see Table S1 for locality details). 
The inset shows the location of Sulawesi 
within the Indo-Australian Archipelago 
and the extent of land (grey polygon) 
during Pleistocene sea level low-stands 
(−120 m)
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habitat (Figure 1; Evans et al., 2008; Evans, et al., 2003) and 
a suture between two microplates that were ancient islands 
(Figure 1; Shekelle et al., 2017). Several studies in other taxa 
have identified the Gorontalo divide as the most substantial 
break in species and phylogeographic populations on the 
northern peninsula (Evans et  al.,  1999; Evans et  al.,  2003; 
Evans, et al., 2003; Shekelle et al., 2017; Walton et al., 1997). 
Indeed, a systematic study of murid rodents on Sulawesi con-
sidered the Gorontalo divide the most substantial biogeo-
graphic boundary on the island (Musser, 2014).

The Bunomys division (Rowe et  al.,  2019) comprises 
11 described genera and 32 species and is one of the most 
diverse radiations of mammals in Wallacea (Fabre, Reeve, 
et  al.,  2018; Musser,  2014; Rowe et  al.,  2019). The divi-
sion is represented by four species in the Lesser Sundas 
(genera Komodomys Musser and Boeadi, 1980; Papagomys 
Sody,  1941; Paulamys Musser, 1986; and Rattus timoren-
sis Kitchener, Aplin and Boeadi, 1991), three species in the 
Philippines (genus Bullimus Mearns, 1905), four species on 
the Sunda shelf (genus Sundamys Musser & Newcomb, 1983), 
two species in the Maluku Islands (genus Halmaheramys 
Fabre et al., 2013) and 20 species on Sulawesi (genera 
Bunomys Thomas,  1910, Eropeplus Miller and Hollister, 
1921, Lenomys Thomas, 1898; Paruromys Ellerman, 1954; 
and Taeromys Sody,  1941). Phylogenetic analyses suggest 
that the four Bunomys division species (genus Sundamys) that 
occur west of Wallace's Line on the Sunda Shelf are the result 
of secondary colonization from Wallacea (Rowe et al., 2019). 
All species in the Bunomys division evolved from a single 
Pliocene colonization of Sulawesi where they account for 
20 of the 48 murid species recognized on the island (Rowe 
et  al.,  2019). On Sulawesi, the Bunomys division radiated 
into a diverse assemblage of ecomorphological forms found 
across the island from sea level to the highest sites that have 
been surveyed (~2,600 m). Their body size ranges from under 
100 grams (e.g. Bunomys chrysocomus Hoffmann, 1887) to 
over 300 grams (e.g. Lenomys meyeri (Jentink, 1879)). The 
radiation includes terrestrial (e.g. B. chrysocomus), general 
(e.g. Paruromys dominator) and arboreal (e.g. L. meyeri) spe-
cies (Musser, 2014; Nations et al., 2019). The genus Bunomys 
retained the generic body plan of terrestrial, medium-sized 
murids in the tribe Rattini, but includes species with om-
nivorous (B. chrysocomus), fungivorous (B.  karokophilus 
Musser,  2014) and carnivorous (B. prolatus Musser,  1991, 
B.  torajae Musser, Achmadi, Esslestyn and Rowe in 
Musser,  2014) diets (Musser,  2014). Other species are pri-
marily herbivorous (Taeromys callitrichus (Jentink, 1879)) 
or frugivorous (P. dominator (Thomas, 1921), Taeromys ce-
lebensis and T.  hamatus (Miller and Hollister, 1921)). The 
genera Eropeplus and Lenomys are large (>300 g), semi-ar-
boreal, woolly rats with exceptionally large and complex 
molars that aligned them morphologically with the genera 
Pithecheir Cuvier, 1833 and Lenothrix Miller, 1903 of the 

Sunda Shelf (Musser,  1981). Indeed, based on cranial and 
dental trait similarities, they were placed in the Pithecheir 
division (Aplin & Helgen, 2010; Carleton & Musser, 2005).

Although Sulawesian members of the Bunomys divi-
sion are found across the island at all elevations that have 
been surveyed, only four species are distributed in more 
than two AoEs and 10 species are restricted to a single AoE 
(Musser,  2014). With eight recognized species, the genus 
Bunomys Thomas,  1910 is the most species-rich genus in 
the Bunomys division (Musser,  2014; Rowe et  al.,  2019). 
Two species of Bunomys (B. chrysocomus and B. andrewsi 
(Allen 1911)) are common and widespread across large 
areas of Sulawesi, including multiple AoEs and wide ele-
vational ranges. Six species are restricted to a small portion 
of the island including one or two AoEs (Musser,  2014). 
One of the most geographically restricted is B.  fratrorum 
(Thomas, 1896), which is known only from the eastern half 
of the northern peninsula of Sulawesi. The geographic pat-
tern of endemism suggests that geographic isolation, espe-
cially on Sulawesi's peninsulas, may promote speciation. 
However, many new species of rats have been described from 
Sulawesi in recent years, including two species in the genus 
Bunomys (Esselstyn et al., 2012, 2015; Mortelliti et al., 2012; 
Rowe et  al.,  2014, 2016Musser 2014). New geographic re-
cords often result in substantial changes to our knowledge of 
species’ distributions (Achmadi et al., 2014). A recent revi-
sion of genus Bunomys reported that some species are known 
from few records or localities with substantial geographic 
gaps in sampling (Musser, 2014). Moreover, the monophyly 
of the genus Bunomys and species boundaries within it have 
not been tested with genetic data. Indeed, B. fratrorum was 
once treated as a separate genus, Frateromys Sody, 1941.

With the goals of better understanding the taxonomy, evo-
lutionary relationships and geographic ranges of Sulawesi's 
Bunomys division members, we (a) conducted field surveys 
across the northern peninsula, (b) inferred phylogenetic rela-
tionships, (c) tested the monophyly of genera and (d) quanti-
fied morphological variation.

2 |  MATERIALS AND METHODS

2.1 | Field survey

Across the northern peninsula, 15 species were recorded 
from previous surveys, but with substantial gaps west of the 
Gorontalo divide (Figure 1; compiled in Musser, 2014). From 
2013 to 2016, we surveyed small mammals on two moun-
tains west of the Gorontalo divide in the North-west AoE and 
two mountains east of the Gorontalo divide in the North-east 
AoE (Figure 1; Table 1). Our efforts included sampling: (a) 
around two camps on Mt. Dako (NW-A; 400 m and 1,600 m) 
from 1 to 16 March 2013; (b) around two camps on Mt. 
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Buliohuto (NW-B; 425 m and 1,300 m) from 16 January to 
2 February 2014; (c) around one camp on Mt. Ambang (NE-
A; 1,500 m) from 15 February to 2 March 2016; and (d) rats 
collected by villagers near the base of Mt. Dua Saudara (NE-
B; <1,000 m). Specimens taken on the first three mountains 
were collected using a combination of victor rat traps and 
20 L pitfalls. Trapping procedures followed the guidelines of 
the American Society of Mammalogists (Sikes et al., 2016; 
Sikes & Gannon, 2011), with approvals under ethic permits 
from Louisiana State University (Permit No. 13–020) and 
Museums Victoria (MVAEC 15002).

2.2 | Genetic sequencing

We obtained tissue samples from 14 of 18 described Bunomys 
division species on Sulawesi (Table S1). Tissue samples were 
not available for Bunomys karokophilus, Taeromys arcuatus 
(Tate and Archbold, 1935), T. hamatus or T. microbullatus 
(Tate and Archbold, 1935). We also included one unde-
scribed genus and one undescribed species of Taeromys first 
published by Rowe et al. (2019). To these samples, we added 
published sequences from 12 additional Bunomys division 
species from the Lesser Sundas (Papagomys, Komodomys 
and Rattus timorensis), the Maluku islands (Halmaheramys), 
the Philippines (Bullimus) and the Sunda Shelf (Sundamys). 
We included Rattus hoffmanni Matschie, 1901, and Rattus 
facetus Miller and Hollister, 1921, as outgroups. We extracted 
DNA from tissue samples using a QIAextractor machine or a 
QIAGEN DNeasy blood and tissue kit. For each sample, we 
amplified and sequenced one mitochondrial DNA locus (cy-
tochrome b) and fragments of four unlinked autosomal nu-
clear exons: exon 11 of breast cancer 1 (BRCA1); exon 1 of 
retinol-binding protein 3 (IRBP); the single exon of recom-
bination activating gene 1 (RAG1); and exon 10 of growth 
hormone receptor (GHR). Amplification and sequencing 
followed the procedures of Rowe et al. (2019). All new se-
quences are available on GenBank with accession numbers 
(MW058816-MW059016; Table S1).

2.3 | Phylogenetic analyses

We aligned homologous sequences using MUSCLE 3.8.425 
(Edgar,  2004) with default settings, inspected the resulting 
alignments manually with AliView 1.24 (Larsson, 2014) and 
then concatenated the alignments in Geneious 10.2.5. For 
phylogenetic analyses, we created two concatenated data sets, 
one consisting of all loci and the other with the mitochondrial 
gene removed. We estimated the best-fit model(s) of sequence 
evolution using ModelFinder (Kalyaanamoorthy et al., 2017) 
implemented in IQ-TREE 1.6.10 (Nguyen et al., 2015). For 
ModelFinder input, we used the all-locus data set divided by 

codon position for each locus (i.e. maximum of 15 partitions). 
Searches were completed using the Bayesian Information 
Criterion (BIC) and greedy algorithm (Lanfear et al., 2012). 
Using the results from ModelFinder, we performed maximum 
likelihood analyses for each data set using IQ-TREE with 
1,000 pseudo-replicates of ultrafast bootstrap approximation 
(UFBoot2) (Minh et al., 2013; Nguyen et al., 2015). To com-
plement our bootstrap search, we performed SH likelihood-
ratio tests (Shimodaira & Hasegawa, 1999) implemented in 
IQ-TREE using constrained trees with monophyletic genera 
Bunomys and Taeromys. The constrained trees were created 
using TreeGraph v2.15 (Stöver & Müller, 2010).

We used a secondary calibration approach with the 
all-locus data set in BEAST v2.5.1 (Bouckaert et al., 2014) 
to estimate the divergence times of the species and genera 
within the Bunomys division. We took a 3.45  Ma (95% 
HPD  =  3.09–3.81  Ma) crown age for the Bunomys divi-
sion from Rowe et al. (2019) set as a log-normal distribution 
for the BEAST2 prior as follows: Mean = 1.237, Standard 
Deviation  =  0.0612, and offset  =  0. In BEAUTi, we im-
plemented the favoured partition schemes using the SSM 
1.1.0 package on the all-locus data set for BEAST2 analyses 
(Table S2). We estimated the topology and used Bayesian 
strict-clock analyses in BEAST2 to estimate the divergence 
dates. Clock and substitution models were unlinked among 
partitions, but tree models were linked. For the tree priors, we 
applied the birth-death model with exponentially distributed 
birth and death rates (mean = 1; offset = 0). For our data 
set, which mixes species and populations, the birth-death 
model produced more consistent and precise results com-
pared to other models supported by BEAST2 (e.g. Ritchie 
et al., 2017). Other priors remained in their default settings. 
We performed BEAST2 analyses with two independent 
MCMC runs of 108 generations each, with sampling every 
104 generations. BEAST2 was run using the BEAGLE v3.1.0 
algorithm using a GPU set at double precision floating point 
operation (Ayres et al., 2019). We checked convergence and 
appropriate ESS on Tracer 1.7.1 (Rambaut et al., 2018). We 
combined the two BEAST tree files from the two runs using 
LogCombiner v2.6.1. We created a maximum clade credibil-
ity phylogeny from the combined tree file set at 10 per cent 
burnin using TreeAnnotator 2.5.1 (Bouckaert et al., 2014).

2.4 | Morphological analyses

To characterize morphological differences among Bunomys 
division members, we examined and measured 264 speci-
mens of 16 species from 34 localities across Sulawesi (Table 
S3). These specimens comprise seven of the eight named 
species of Bunomys and representatives of each of the four 
other Bunomys division genera endemic to Sulawesi in-
cluding an undescribed genus (Rowe et  al.,  2019). All 
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specimens are deposited at Museums Victoria (NMV) in 
Melbourne, Louisiana State University Museum of Natural 
Science (LSUMZ) in Baton Rouge, the American Museum of 
Natural History (AMNH) in New York, the Field Museum of 
Natural History (FMNH) in Chicago, the National Museum 
of Natural History (USNM) in Washington D.C. or Museum 
Zoologicum Bogoriense (MZB) in Bogor.

We used a digital caliper (0.01 mm accuracy) to measure 
a standard set of 20 craniodental characters from each spec-
imen following Musser and Heaney (1992). Measurements 
consisted of greatest length of skull (GLS), zygomatic 
breadth (ZB), length of nasal (LON), length of rostrum (LR), 
breadth of rostrum (BR), interorbital breadth (IB), breadth of 
zygomatic plate (BZP), breadth of braincase (BBC), height 
of braincase (HBC), postpalatal length (PPL), length of di-
astema (LD), length of bony palate (LBP), length of incisive 
foramina (LIF), breadth of insicive foramina (BIF), breadth 
of mesopterygoid fossa (BMF), length of bulla (LB), crown 
length of maxillary molar row (CLMM), alveolar breadth of 
first upper molar (BUM), breadth of upper incisor (BUI) and 
depth of upper incisor (DUI) (Figure S1). We included mea-
surements from adult individuals only, which we identified 
by fully erupted upper third molars (M3) and fused basioc-
cipital-basisphenoid sutures.

We used principal component analyses (PCA) of the 
correlation matrix on untransformed variables to examine 
craniodental variation among genera and species within the 
Bunomys division radiation on Sulawesi. These analyses 
were conducted in R (R Core Team, 2020) using ggplot2 for 
visualization (Wickham, 2016).

3 |  RESULTS

3.1 | Field surveys

From 2013 to 2016, we documented 20 murid species from 
four northern peninsula mountains, consisting of 11 species 
from Mt. Dako (NW-A), 9 from Mt. Buliohuto (NW-B), 
13 from Mt. Ambang (NE-A) and 7 from Mt. Dua Saudara 
(NE-B; Table  1). We collected specimens of B.  fratrorum 
from Mt. Ambang and obtained the same species from Mt. 
Dua Saudara in the eastern half of the northern peninsula 
where the species was thought to be endemic. We also col-
lected several individuals from Mt. Dako on the western 
end of the northern peninsula that appeared most similar 
to B.  fratrorum in external characters. In addition, we also 
recorded Taeromys taerae and T.  callitrichus outside their 
known ranges on Mt. Dako and Mt. Buliohuto, respectively 
(Table 1). We did not detect Lenomys meyeri or Taeromys 
celebensis from Mts. Dako or Buliohuto, but other studies 
have recorded them from nearby localities in the NW Area 
of Endemism (Musser,  2014; Table  1). Similarly, we did 

not detect Bunomys chrysocomus or Margaretamys bec-
carii from Mts. Ambang or Dua Saudara, but other studies 
have recorded them from nearby localities in the NE Area of 
Endemism (Musser, 2014; Table 1).

3.2 | Phylogenetic relationships and 
divergence dates

The concatenated alignment of all loci contained 67 indi-
viduals, representing 43 species. Seven individuals from 
three species were represented by only the mitochondrial 
locus (see Figure 2). The data set is 5,349 base-pairs (bp) 
long with 8.9% missing data. The concatenated alignment 
of all nuclear genes contained 60 individuals, 4,544  bp 
and no missing data (see Table S2 for details). For the 
all-locus data set, the maximum likelihood (IQ-TREE) 
and Bayesian (BEAST2) analyses produced nearly iden-
tical topologies (Figure  2). Both supported a monophyl-
etic radiation of genera on Sulawesi (Bunomys, Eropeplus, 
Lenomys, Paruromys, Taeromys and gen. et sp. n.) sister 
to Halmaheramys from the Maluku Islands, as reported 
previously (Rowe et  al.,  2019). The nuclear-only data 
set placed Halmaheramys sister to the genus Bunomys 
within the Sulawesi radiation, but with modest support 
(maximum likelihood bootstrap values (MLBV) = 80%). 
However, only two of the four nuclear loci were available 
for Halmaheramys. Within the Sulawesi radiation, the all-
locus data set supported the earliest split between a clade 
containing all species of Bunomys, except B.  fratrorum 
(Bayesian posterior probabilities (PP)=1; MLBV = 100%) 
and a clade containing all other genera and B.  fratrorum 
(PP  =  0.93; MLBV  =  84%). The nuclear-only data also 
supported the placement of B. fratrorum with other genera, 
to the exclusion of other Bunomys (MLBV = 76%; Figure 
S2). While the support values for monophyly of this ‘all 
other genera' clade were modest from both the all-locus 
and nuclear-only data sets, an SH test using the all-locus 
data set shows that a monophyletic Bunomys including 
B.  fratorum has a significantly lower likelihood (delta 
logL = 49.31, p = .009). Thus, the inclusion of B. fratro-
rum in Bunomys renders the genus polyphyletic. We esti-
mated the divergence of B. fratrorum from other Bunomys 
circa 2.4  Ma in the Early Pleistocene (95% Highest 
Posterior Density (HPD)= 2.04–2.84  Ma; Figure  2). At 
the base of the ‘all other genera’ clade, we recovered five 
well-supported descendant lineages but without support 
for relationships among any of them. These included (a) 
a monotypic lineage representing an undescribed genus 
(Rowe et al., 2019), (b) Eropeplus + Lenomys, (c) Bunomys 
fratrorum, (d) Taeromys celebensis + Paruromys domina-
tor and (e) all other Taeromys. The well-supported place-
ment of Paruromys sister to T. celebensis (MLBV = 100%, 
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PP = 1.0), the type species for the genus Taeromys, ren-
ders Taeromys paraphyletic. An SH test of a monophyl-
etic Taeromys showed significantly lower likelihood 

(deltaL = 127.35, p = <.0001). This relationship also was 
well-supported by the nuclear-only data (MLBV  =  99%; 
Figure S2). In contrast, the node uniting all Taeromys 

F I G U R E  2  Fossil-calibrated Bayesian (BEAST2) phylogeny of the Bunomys division. Numbers at nodes indicate posterior probabilities 
(BEAST) followed by UFBoot2 bootstrap support (IQ-TREE). Only PP >90% and MLBV >70% are shown. Grey bars represent 95% HPD 
intervals for node ages. The populations of species across Sulawesi were labelled with specific geographic localities shown in Figure 1. The branch 
colours indicate AoE regions corresponding to the specific localities at the tips (see Table S1 for locality details). The asterisk indicates a sample 
obtained from a wildlife market
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and P. dominator was not well-supported by any analysis 
(MLBV = 39%, PP = 0.41).

Within species, Bayesian and maximum likelihood anal-
yses of the all-locus data set revealed several examples of 
deep divergence and reciprocal monophyly among geo-
graphic localities. This was most notable in B.  fratrorum 
where three reciprocally monophyletic clades were evident 
among sampling localities. The western northern peninsula 
population (NW AoE) from Mt. Dako (NW-A) diverged 
from the eastern northern peninsula populations (NE AoE) 
from Mts. Ambang (NE-A) and Dua Saudara (NE-B) circa 
1.5  Ma in the Pleistocene (95% HPD  =  1.24–1.96  Ma; 
Figure 2). We also recovered strong support for reciprocal 
monophyly of samples from Mt. Ambang (n = 3) and Mt. 
Dua Saudara (n  =  2) with divergence circa 0.6  Ma (95% 
HPD  =  0.47–0.87  Ma). Similarly, we inferred reciprocal 
monophyly for Mt. Dako and Mt. Ambang populations of 
T. taerae, but with divergence <0.5 Ma (95% HPD = 0.24–
0.5  Ma). We recovered a similar divergence time circa 
0.5 Ma (95% HPD = 0.34–0.67 Ma) between the individual 
samples of T. callitrichus from Mt. Buliohuto (NW-B) west 
of Gorontalo and Mt. Ambang (NE-A) east of Gorontalo. 

Multiple divergent populations with ages, circa 0.7–0.8 Ma, 
were also evident within B. penitus, B. torajae and P. dom-
inator sampled from other AoEs outside the northern pen-
insula (Figure 2).

3.3 | Variation in morphology

From our principal component analysis, we retained the 
first two axes, using the latent root criterion (McGarigal 
et  al.,  2013), as each had eigenvalues >1. The first axis 
represented skull size and explained 86% of the variation, 
whereas PC2 explained 3.6% and contrasted rostrum and 
nasal length with skull width (Figure  3; Table  2). The 
genera Bunomys, Lenomys, Taeromys and Paruromys 
were clearly separated in morphospace. Bunomys (in-
cluding B.  fratrorum) was distinct from most other gen-
era along PC1 except the larger species (B.  fratrorum) 
overlapped with some specimens of the smaller species of 
Taeromys (T. hamatus, T. taerae) and with the gen. et sp. 
n. Eropeplus was completely encompassed by Taeromys 
in PC1 and PC2 space.

F I G U R E  3  Principal component analyses (PCA) of linear craniodental measurements from species in the Bunomys division. Minimum 
polygons drawn around Bunomys (excluding fratrorum), Bunomys fratrorum, Eropeplus, gen. et sp. n., Lenomys, Paruromys and Taeromys. 
Loadings are provided in Table 2
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4 |  DISCUSSION

Previous studies of Sulawesi vertebrates, including macaques 
(Evans et al., 1999; Evans et al., 2003; Evans, et al., 2003; 
Fooden,  1969), toads (Evans, et  al.,  2003) and spiny rats 
(Giarla et  al.,  2018) found that endemic species and phy-
logeographic lineages are structured by areas of endemism 
(AoEs) west and east of the Gorontalo divide on the northern 
peninsula of Sulawesi. Studies of other taxa (grasshoppers, 
Bridle et al., 2001; skinks, Linkem et al., 2013; and snails, 
von Rintelen et al., 2014), which did not find a strong break 
at the Gorontalo divide, also did not find support for AoEs in 
other parts of Sulawesi. Our recent surveys combined with 
previous records (Musser,  2014) of murid rodents across 
the northern peninsula supported the endemism of six spe-
cies west or east of the Gorontalo divide. These combined 
records show that Echiothrix leucura, Rattus marmosurus 
and R. xanthurus are only found east of Gorontalo. In con-
trast, the closest relatives of these species are only found west 
of the Gorontalo divide (R.  facetus for R. marmosurus and 
R. xanthurus and E. centrosa for E. leucura). Our surveys of 

Mts. Dako and Buliohuto provided the first records of four 
species of murids from the NW AoE, between Gorontalo and 
the central core of Sulawesi. Two of these species, Taeromys 
callitrichus and Haeromys minahassae, were previously re-
corded from east of the Gorontalo divide and from the central 
core of Sulawesi, but not the NW AoE in between (Table 1; 
Carleton & Musser, 2005; Musser, 2014). Two other species, 
Bunomys fratrorum and Taeromys taerae, were thought to be 
endemic to areas east of the Gorontalo divide.

While our surveys indicated a range extension for B. fra-
trorum, T.  callitrichus and T.  taerae across the northern 
peninsula that appears to undermine the importance of the 
Gorontalo divide as a biogeographic boundary, our phyloge-
netic analyses found deep divergence between populations of 
B. fratrorum and modest divergence between populations of 
T. callitrichus and T. taerae on either side of the divide. The 
divergence of B.  fratrorum populations from west and east 
of the divide was nearly as deep as the divergence among all 
other species of Bunomys. Even among the two eastern-most 
populations (Mts. Ambang and Dua Saudara), we recovered 
reciprocal monophyly but with modest divergence, less than 
any species pair in our data. The divergence of T. callitrichus 
and T. taerae populations from either side of the Gorontalo 
divide was similarly more recent than between species pairs. 
However, reciprocal monophyly for T.  taerae samples sug-
gests that populations have been evolving independently for 
a long time (only 1 sample per population was available for 
T. callitrichus). Therefore, our results are consistent with bio-
geographic boundaries on the northern peninsula isolating in-
cipient populations and species in the early to late Pleistocene 
(Evans, et al., 2003; Nugraha & Hall, 2018).

We also observed divergent populations within other spe-
cies sampled across Sulawesi but not consistently associated 
with AoEs. After Bunomys fratrorum, the next deepest diver-
gences within species are evident in B. penitus, B. torajae and 
P. dominator, each with comparable crown ages. In P. domi-
nator, reciprocal monophyly is evident between samples from 
the northern peninsula (NW and NE AoEs) and from the rest 
of Sulawesi (WC and SW AoEs), which is represented by the 
boundary between the WC and NW AoEs. This boundary is 
associated with the history of the northern peninsula as a sep-
arate island until ~1 Ma (Nugraha & Hall, 2018). In contrast 
to P. dominator, the comparable divergences within the two 
Bunomys spp. occur entirely within the WC AoE. For B. pen-
itus, the divergence occurs between the single sample from 
Mt. Rorekatimbo (WC-A) in the north-east part of the West-
Central AoE and the remaining samples, which are from the 
southwest part of the West-Central AoE (WC-C, WC-D). In 
B. torajae, divergence occurs between these same two locali-
ties (WC-C, WC-D), which are the only localities where this 
species is recorded. Based on a wider sampling of Murinae, 
but less complete sampling of the Bunomys division, we 
previously reported these WC-D samples as Bunomys sp. n. 

T A B L E  2  Variable loadings, eigenvalues and percentage of 
variance for the principal component analyses. Variable abbreviations 
are defined in the ‘Materials and Methods’

Variables

Principal components

PC1 PC2

GLS 0.711 0.055

ZB 0.357 −0.386

LON 0.281 0.428

LR 0.175 0.674

BR 0.073 0.051

IB 0.042 −0.011

BZP 0.142 −0.089

BBC 0.195 −0.300

HBC 0.126 −0.196

PPL 0.247 −0.131

LD 0.194 0.084

LBP 0.211 −0.053

LIF 0.072 0.121

BIF 0.019 −0.003

BMF 0.016 −0.001

LB 0.056 −0.074

CLMM 0.136 −0.119

BUM 0.033 −0.047

BUI 0.030 −0.063

DUI 0.056 −0.066

Eigenvalue 37.71 1.61

Percentage of variance 86.19 3.68
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(Rowe et al., 2019). In the current phylogeographic context 
of this study, these populations appear to have geographic 
variation comparable to other currently recognized species 
on Sulawesi. In contrast, Taeromys sp. n. (also reported in 
Rowe et al., 2019) is deeply divergent from other species of 
Taeromys sampled in this study.

In addition to revealing divergence of populations across 
Sulawesi, our phylogenetic analyses rendered the genus 
Bunomys polyphyletic by inclusion of B. fratrorum, which is 
nested among other Bunomys division genera. Bunomys coe-
lestis and B. fratrorum were the first two species of Bunomys 
described (Thomas, 1896), and both were originally placed 
in Mus. The genus Bunomys was later proposed by Thomas 
(1910) for B.  coelestis, a SW AoE endemic. Bunomys was 
later moved to Rattus (Ellerman, 1941). However, Rattus has 
long been an unnatural grouping of difficult-to-place species 
(e.g. Ellerman, 1941; Tate, 1936). The elevation of R. fratro-
rum to Frateromys fratrorum (Sody, 1941) was just one of a 
dozen genera proposed by Sody to resolve the now well-sup-
ported view that Rattus (sensu Carleton & Musser,  2005; 
Ellerman,  1941; Tate,  1936) ‘constitutes a heterogeneous 
group’ (see R.  timorensis in this study; Rowe et  al.,  2019; 
Thomson et  al.,  2018). Since their first descriptions, the 
genera Mus, Bunomys (Musser,  1981, 2014; Tate,  1936; 
Thomas,  1910), Rattus (Ellerman,  1941; Tate,  1936) and 
Frateromys (Sody,  1941) have applied at various times to 
species currently in the genus Bunomys. However, for nearly 
forty years now, the genus Bunomys has remained stable 
(Musser, 1981), with addition only of newly described spe-
cies from Sulawesi (Musser,  1991, 2014). However, our 
phylogenetic analyses show that Bunomys, as currently de-
fined, constitutes a heterogeneous and polyphyletic taxon. 
We also argue that the stability of the genus in common 
taxonomic usage warrants recognizing Bunomys as used by 
Thomas,  1910 and not the brief mention of Bunomys as a 
possible name for the tooth of an undescribed rodent found 
in a cave in Madagascar (Grandidier, 1905, p. 50). Here, we 
repair the monophyly of Bunomys by resurrecting the avail-
able generic name Frateromys for B. fratrorum, as proposed 
by Sody (1941).

Our phylogenetic analyses also rendered Taeromys para-
phyletic with Paruromys dominator sister to T.  celebensis. 
Paruromys dominator was originally described as a Rattus 
(Thomas, 1921), and Taeromys celebensis was described as 
Mus celebensis (Gray, 1867). The genus Taeromys was sub-
sequently introduced by Sody to help resolve the heteroge-
nous group that was Rattus (Sody, 1941). Sody (1941) gave 
T. celebensis as the type species and included T.dominator in 
this new genus. Later, T. dominator was returned to Rattus 
using the subgenus Paruromys (Laurie & Hill, 1954). Musser 
and Newcomb (1983) then elevated Paruromys to genus. This 
arrangement was maintained by subsequent studies without 
molecular phylogenetic data (Carleton & Musser,  2005; 

Musser,  1984, 2014). Paruromys dominator and T.  cele-
bensis share similar features of skins, skulls and teeth and 
are often confused in collections (Musser, 2014; Musser & 
Newcomb, 1983). Given the sister relationship of P. domina-
tor to the type species of Taeromys, we transfer Paruromys 
dominator back into Taeromys. However, the monophyly of 
our revised Taeromys was not well-supported in our analy-
sis with low support values at the node uniting all sampled 
Taeromys. Further phylogenetic studies are needed to deter-
mine whether Taeromys is indeed monophyletic. The genus 
name Arcuomys Sody, 1941, is available but applies to T. ar-
cuatus, one of three named species of Taeromys not in our 
data set.

In contrast to the genetic data, standard cranial mea-
surements used widely in murine taxonomy (Balete 
et al., 2007; Fabre, Fitriana et al., 2018; Heaney et al., 2011; 
Helgen, 2003; Musser & Heaney, 1992; Rickart et al., 2005; 
Rowe et  al.,  2014;) were much less effective at defining 
generic boundaries. Using phenotypic characters to dis-
tinguish generic boundaries among species of Murinae, 
particularly among members of Tribe Rattini (sensu Rowe 
et al., 2019), has been a challenge for more than a century. 
Many murines were described first under Mus Linnaeus, 
1758, later transferred to Rattus Fischer, 1803, and ulti-
mately transferred to a distinct genus (e.g. Niviventer 
Marshall, 1976). While Frateromys fratrorum was at the 
upper limits of genus Bunomys on PC1, they were com-
pletely subsumed in PC2 and overlapped other large-bod-
ied Bunomys on PC1 (see also Musser,  2014). However, 
these same cranial data could discriminate genus Bunomys, 
excluding F.  fratrorum, from all other Bunomys division 
genera by combinations of PCs 1 and 2 (Figure 3). In con-
trast to Bunomys and Frateromys, Paruromys, which we 
transfer to Taeromys, is completely separated from all other 
Taeromys along PC1. Paruromys is also separated from 
its sister lineage, T. celebensis, on PC2, whereas T.  cele-
bensis overlaps other species of Taeromys and the genus 
Eropeplus. Thus, the quantitative cranial morphological 
data mislead the inference of generic boundaries both by 
recovering overlap among distantly related lineages (i.e. 
Bunomys and Frateromys) and by recovering morphologi-
cal divergence in closely related phylogenetic lineages (i.e. 
T. celebensis and P. dominator). These patterns show that 
evolution of size diversity is not particularly informative 
for understanding relationships and that quantitative traits 
capture relatively limited differences in cranial shape.

This study joins other recent discoveries based on new 
field surveys over the last ten years that demonstrate the 
need for new collections to address our incomplete under-
standing of murid taxonomy and geographic distributions on 
Sulawesi (Esselstyn et al., 2012, 2015; Mortelliti et al., 2012; 
Musser,  2014; Rowe et  al.,  2014, 2016). The Bunomys di-
vision is the most diverse radiation of murid rodents on 
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Sulawesi. While the taxonomy of the genus Bunomys was 
reviewed recently (Musser,  2014), our addition of molecu-
lar phylogenetic data shows that many taxonomic issues re-
main unresolved, including within Bunomys and other genera 
within the Bunomys division. The complex topography and 
geography of Sulawesi are likely to have facilitated with-
in-island speciation in many groups of organisms, but they 
also make documenting the island's many species and their 
geographic distributions a substantial challenge (Esselstyn 
et al., 2012, 2015; Mortelliti et al., 2012; Rowe et al., 2014, 
2016).
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